Ionocovalency Correlates with de Broglie Relationship

Ionocovalency Correlates with de Broglie Relationship [*]

 Yonghe Zhang
American Huilin Institute


According to de Broglie relationship

                                                                          λ=h/p                                                                                (6)

we have

                                                                      p = (2mT)½                                                                                                    (7)


where m is nonzero rest mass of a normal particle and T is kinetic energy. Since E = T + V, where E is the total energy and V is the potential energy, we have de Broglie wavelength as 


                                                                 λ= h/ (2m(E-V))½                                                                       (9)


Furthermore, since ionocovalency


                                                   I(Iz )C(n*rc-1) = n*(Iz /R)½ rc-1 = V                                                       (10)


we can correlate ionocovalency with de Broglie wavelength as


                                      λ= h/ (2m(E - IC))½ = h/(2m(E - n*( Iz /R)½ rc-1))½                                             (11)


And so we can see that the wavelength is directly proportional to ionocovalency and inversely proportional to the covalent radius rc and the size of the particle, and that means the dual ionocovalency can be correlated uwith wave-particle dual nature. That also describes a rule that the higher the ionocovalency the larger the de Broglie wavelength, the more wave-like, the smaller size and the faster motion the particle, and vice versa.

Thus in the limit λ→0 we expect the time-dependent Schrödinger Wave Equation to reduce to Newton’s second law [x]. Since h is very small, the de Broglie wavelength of macroscopic objects is essentially zero.


[*] Zhang, Y. Ionocovalency, J. Am. huilin. Ins. 2011, 5, 1-11  

[*] Zhang, Y. Ionocovalency and Applications 1. Ionocovalency Model and Orbital Hybrid Scales. Int. J. Mol. Sci. 2010, 11, 4381-4406 




Write a comment

Comments: 0